Elevation of oxidized DJ-1 in the brain and erythrocytes of Parkinson disease model animals.

نویسندگان

  • Yoko Ogawa Akazawa
  • Yoshiro Saito
  • Takao Hamakubo
  • Yoshinori Masuo
  • Yasukazu Yoshida
  • Keiko Nishio
  • Mototada Shichiri
  • Tomohiro Miyasaka
  • Hiroko Iwanari
  • Yasuhiro Mochizuki
  • Tatsuhiko Kodama
  • Noriko Noguchi
  • Etsuo Niki
چکیده

DJ-1, the causative gene of a familial form of Parkinson's disease (PD), has been reported undergo oxidation preferentially at the 106th cysteine residue (Cys-106) under oxidative stress. Recently, it has been found that the levels of oxidized DJ-1 in erythrocytes of unmedicated PD patients are markedly higher than those in medicated PD patients and healthy subjects. In the present study, we examined the changes in oxidized DJ-1 levels in the brain and erythrocytes of PD animal models using specific antibodies against Cys-106-oxidized DJ-1. Treatment with PD model compounds such as 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and 6-hydroxydopamine significantly elevated the levels of oxidized DJ-1 in erythrocytes. Immunohistochemical analysis also revealed that the number of oxidized DJ-1 antibody-positive cells in the substantia nigra of MPTP-treated mouse increased in a dose-dependent manner. These results suggest that the oxidative modification of DJ-1 in the brain and erythrocytes is involved in the pathogenesis of PD in animal models.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Immunostaining of Oxidized DJ-1 in Human and Mouse Brains

DJ-1, the product of a causative gene of a familial form of Parkinson disease, undergoes preferential oxidation of Cys106 (cysteine residue at position 106) under oxidative stress. Using specific monoclonal antibodies against Cys106 oxidized DJ-1 (oxDJ-1), we examined oxDJ-1 immunoreactivity in brain sections from DJ-1 knockout and wild-type mice and in human brain sections from cases classifie...

متن کامل

The Effects of Sodium Hydrosulfide on Motor Learning in a Rat Model of Parkinson’s Disease

Background Hydrogen Sulfide (H2S), a novel endogenous gasotransmitter, plays an important role in neuromodulation and memory performance and also protects neurons against neurotoxin-induced neurodegeneration. Objective This study aimed to investigate the potential neuroprotective effects of Sodium Hydrosulfide (NaHS), on motor learning in a unilateral 6-Hydroxydopamine (6-OHDA) rat model of Pa...

متن کامل

Oxidized DJ-1 as a possible biomarker of Parkinson’s disease

Parkinson's disease is a progressive, age-related, neurodegenerative disorder, and oxidative stress is an important mediator in its pathogenesis. DJ-1 is a causative gene of a familial form of Parkinson's disease, namely PARK7, and plays a significant role in antioxidative defense to protect the cells from oxidative stress. DJ-1 undergoes preferential oxidation at the cysteine residue at positi...

متن کامل

Effect of ellagic acid on thiol levels in different brain tissue in an animal model of Parkinson's disease

Background & Aim: Parkinson's disease (PD) can be created with loss of dopaminergic substantial nigra neurons which is widely associated with oxidative stress and reduced glutathione (GSH), as the most important and abundant thiol in tissues and one of the antioxidant defense, is one of the earliest biochemical events related to Parkinson's and consumption of antioxidants has a protective effec...

متن کامل

Effect of ellagic acid on thiol levels in different brain tissue in an animal model of Parkinson's disease

Background & Aim: Parkinson's disease (PD) can be created with loss of dopaminergic substantial nigra neurons which is widely associated with oxidative stress and reduced glutathione (GSH), as the most important and abundant thiol in tissues and one of the antioxidant defense, is one of the earliest biochemical events related to Parkinson's and consumption of antioxidants has a protective effec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Neuroscience letters

دوره 483 3  شماره 

صفحات  -

تاریخ انتشار 2010